INFLUENCE OF VARIOUS BIOCHEMICAL AND HAEMATOLOGICAL FACTORS ON "PACKED CELL VOLUME"
 By
 O. P. BAGGA
 Department of Physiology, Govt. Medical College, Patiala* (Received June 12, 1958)

In spite of differences in racial and Socio-Economical conditions, remarkable uniformity in the average normality of packed cell volume at sea level has been observed all over the world (Wintrobe 1933, Nelson \& Stoker, 1937, Hamre \& Auim, 1942). Packed cell volume is estimated as a part of the haematological investigations. Little attempt has been made in correlating and statistically analysing the influence of various biochemical and haematological factors associated with it.

Keeping this in view the present study was undertaken on normal healthy Indians (I. C. M. R. 1953).

MATERIAL AND METHODS

The investigation was carried out on 56 males and 44 females in the morning hours in the post- absorptive period, McCarthy, et. al. (1939); Brown, et al. (1946). The blood containing a mixture of potassium and ammonium oxalate in the ratio 2:3, as suggested by Heller and Paul (1934) was used for various estimations.

Wintrobe haematocrit was used for measuring packed cell volume (spinning being done for 50-55 minutes) Chaplin and Mollison (1952).

Thompkins modification (1948) of Haymes fluid was employed for the enumeration of erythrocytes.

Haemoglobin was measured by means of Leitz photocolorimeter which was calibrated according to Van Slyke (1927) oxygen capacity method.

Serum Calcium values were obtained by titrimetric method of Clark and Collip (1925) and phosphorus values by photocolorimetric technique of Fisk and Subbarow (1925).

Total proteins and albumin and globulin fractions were obtained by Nesslerization (King 1951).

OBSERVATIONS

The figures for the packed cell volume in 56 males and 44 females are given in Table I.

Part of the work was done as a thesis for M. D. examination of the University of Punjab at Lady Hardinge Medical College, New Delhi.

TABLE I
Packed cell volume

| Sex. | No. of
 observa-
 tions. | Max. | Min. | Average. | Variance | Standard
 devia-
 tion. | Co-eff
 of vari-
 ation |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Males | 56 | 53% | 33% | 45.0536 | 23.2153 | 4.8182 | 1069 |
| Females | 44 | 51% | 34% | 41.6227 | 21.3531 | 4.6215 | 11.10 |

Table No. II gives distribution of the cases in males and semales.
TABLE II

Sex	P. C. V. range	No. of cases	Percentage
	45% and above	31	$55 \cdot 36$
	$40-44 \%$	19	$33 \cdot 93$
Females	Below 40%	6	$10 \cdot 71$
	45% and above	9	$20 \cdot 45$
	$40-44 \%$	20	$45 \cdot 45$
	Below 40%	15	$34 \cdot 10$

The figures given in literature as compared to the present study are tabulated in Table III A and B.

TABLE IIIA
MALES

Range	S. D.	Average	Cases	Authorities
55•60-44•10	3.02	$50 \cdot 53$	30	Napier and Das Gupta (1936)
40.02-32.47	. .	$41 \cdot 72$	121	Sokhey et al (1939)
$51 \cdot 23-28 \cdot 34$	4.81	$42 \cdot 18$	25	Napier and Mazumdar (1938)
	$4 \cdot 17$	$47 \cdot 00$	75	Khanna and Sachdev (1946)
$50.00-40 \cdot 00$.	46.00	38	Chini and Chen-Ting (1947)
. .	$4 \cdot 12$	$49 \cdot 27$	100	Ramalinga Swami and
				Venkatachalam (1950)
55.50-35.00	5•17	$45 \cdot 25$.	Chaudhri and Mitra (1957)
52.00-34.50	6.74	$43 \cdot 55$		Do.
$51 \cdot 00-28 \cdot 00$. .	44.00	12	Do.
45.00-30.00		37.00	22	Do.
53.00-33.00	$4 \cdot 82$	$45 \cdot 05$	56	Present study.

O. P. RAGGA

TABLE III B
FEMALES

Range	S. D.	Average	Cases	Authorities	
.	..	38.04	50	Wintrobe (1930) uncorrected	
..	.	39.50	50		
.	.	$38 \cdot 35$	369	Do. (1933) un	
..		$41 \cdot 80$	369	Do.	
47.60-17.99	$7 \cdot 34$	$37 \cdot 07$	25	Napier and Mazumdar	(37-38)
.	$2 \cdot 98$	$41 \cdot 72$.	Sohhey et al.	(1937)
44.67-28.40	$3 \cdot 048$	36.269	101	Sokhey et al.	(1938)
42.00-30.00	$3 \cdot 10$	$34 \cdot 60$	20	Napier and Billimoria	(1937)
\cdots	$1 \cdot 04$	$41 \cdot 80$	25	Khanna and Sachdev	(1946)
46.00-37.00	..	$41 \cdot 00$	43	Chini and Chen-Ting	(1947)
$49 \cdot 00-10 \cdot 50$..	$28 \cdot 80$	12	Chaudhri and Mitra	(1951)
38.00-16.00	.	29-90	22	Do.	
49.00-29.59	$4 \cdot 12$	53.30	106	Do.	
47.00-32.00	$5 \cdot 05$	$47 \cdot 40$	50	Do.	
.	$2 \cdot 70$	$41 \cdot 60$	100	Singh et al.	(1953)
$51 \cdot 00-34 \cdot 00$	$4 \cdot 6215$	$41 \cdot 622$	44	Present study	

Relation of plasma protein to packed cell volume.
It was observed it both sexes that with a fall of total protein level there was a decline in the values of cell volume (Table IV). This was specially so when the deflection was in the albumin fraction (Table V). No such relation with globulin fraction was ohserved (Table VI).

TABLE IV

Males				Females
Range total protein gm. per cent	$\begin{gathered} \text { Average } \\ \text { total } \\ \text { proteingm. } \\ \text { per cent } \end{gathered}$	Average PCV per cent	Average total portein gm, per cent	Average PCV per cent
Above 8.00	8.23	$46 \cdot 67$	$8 \cdot 03$	$50 \cdot 0$
7.5-7.99	$7 \cdot 75$	$44 \cdot 83$	$7 \cdot 675$	$43 \cdot 8$
7•0-7•49	$7 \cdot 23$	$43 \cdot 61$	$7 \cdot 219$	$41 \cdot 62$
6.5-8.99	$6 \cdot 74$	44.93	$6 \cdot 73$	$40 \cdot 0$
6.0-6.49	$6 \cdot 1$	$42 \cdot 16$	$6 \cdot 18$	$42 \cdot 0$
Below 6.00	..	$39 \cdot 00$	5.96	$35 \cdot 00$

TABLE V

	Males		Females	
Range albumin gm. per cent	Average albumin gm. per cent	$\begin{gathered} \text { PCV } \\ \text { per cent } \end{gathered}$	Average albumingm. per cent	PCV per cent
Above 5.25	$5 \cdot 350$.	$5 \cdot 350$	$43 \cdot 00$
5•00-5,24	$5 \cdot 087$	$46 \cdot 22$	5•114	$43 \cdot 67$
4.75-4.99	4.867	$45 \cdot 50$	$4 \cdot 880$	$40 \cdot 80$
4.50-4.74	4.583	$45 \cdot 50$	$4 \cdot 593$	$42 \cdot 875$
5-25-4.49	$4 \cdot 371$	$45 \cdot 20$	$4 \cdot 408$	$42 \cdot 00$
4.00-4.24	$4 \cdot 123$	$45 \cdot 20$	4-I44	$41 \cdot 64$
3.75-3.99	$3 \cdot 900$	41.45	3.990	$41 \cdot 00$
3.50-3.74	3.550	$41 \cdot 45$	$3 \cdot 700$	$40 \cdot 50$
Below 3.50	.	$32 \cdot 10$

TABLE VI

Range Globulin gm. per cent	Average Glob. gm. per cent	PCV per cent	Average Glob. gm. per cent	PCV per cent
Above 3.50	$3 \cdot 59$	$48 \cdot 00$	$3 \cdot 62$	$38 \cdot 00$
3.35-3.49	$3 \cdot 876$	$46 \cdot 00$	$3 \cdot 37$	$42 \cdot 70$
3.00-3.24	$3 \cdot 10$	$47 \cdot 50$	3.10	$42 \cdot 70$
2.75-2.99	$2 \cdot 82$	44×50	$2 \cdot 84$	$43 \cdot 30$
2-50-2.74	$2 \cdot 634$	$44 \cdot 80$	$2 \cdot 63$	$42 \cdot 40$
2-25-2.49	$2 \cdot 372$	$47 \cdot 25$	2.173	$45 \cdot 70$
Below 2.00	1.910	$38 \cdot 67$	$1 \cdot 1847$	$41 \cdot 50$

Multiple correlation and multiple regression equation of PCV on albumin and protein was calculated for males.

Multiple correlation: 0.372 .
Multiple regression equation of PCV ($25 \cdot 3146-2 \cdot 3825$ total proteins 0.6850 albumin).

Standard error was 8.9446.
As multiple correlation was not significant and sensitivity test was not positive so this formula could not be recommended for prediction purposes.

Relationship of serum calcium and phosphorus to PCV
No relationship of serum calcium or inorganic phosphorus to PCV was observed (Table No. VIl \& VIII).

TABLE VII

Males			Females	
Range Calcium mg. per cent	Average calcium mg. per cent	PCV per cent	Average calcium mg. per cent	PCV per cent
Above 11.00	$11 \cdot 750$	$46 \cdot 9$	11.23	$49 \cdot 00$
10.50-10.99	$10 \cdot 765$	$46 \cdot 4$	$10 \cdot 60$	$43 \cdot 625$
10.00-10.49	$10 \cdot 203$	$46 \cdot 5$	$10 \cdot 11$	$41 \cdot 75$
9.50-9.99	$9 \cdot 694$	$46 \cdot 13$	$9 \cdot 67$	$43 \cdot 20$
9.00-9.49	$9 \cdot 16$	$44 \cdot 63$	$9 \cdot 13$	$38 \cdot 14$
8.50-8.99	$8 \cdot 77$	41.00	$8 \cdot 67$	$39 \cdot 00$
8.00-8.49	8.229	40.25	8.185	$37 \cdot 02$

TABLE VIII

Males			Females	
Range Phosphorus mg. per cent	Average Phosphorus mg. per cent	PCV per cent	Average Phosphorus mg. per cent	PCV per cent
5•00-5•25	$5 \cdot 107$	$41 \cdot 00$	$5 \cdot 05$	$39 \cdot 00$
4.75-4.99	$4 \cdot 912$	$43 \cdot 20$	4.915	$39 \cdot 45$
4.50-4.74	$4 \cdot 610$	$43 \cdot 50$	$4 \cdot 59$	$45 \cdot 66$
4-25-4.49	$4 \cdot 334$	$46 \cdot 25$	$4 \cdot 325$	$43 \cdot 00$
4.00-4.24	$4 \cdot 088$	$45 \cdot 40$	$4 \cdot 163$	$41 \cdot 50$
3.75-3.99	3.774	46.71	$3 \cdot 847$	$44 \cdot 142$
3.50-3•74	$3 \cdot 510$	48.33	3.568	39•833
3-25-3.49	3.275	$40 \cdot 75$	3.568	39•833
Below 3.25	$2 \cdot 984$	$45 \cdot 67$	-	..

Relation of red blood cell count and haemoglobin to PCV.

In the analysis of this relationship, it was observed that with a fall of red blood cells the packed cell volume and the haemoglobin showed a progressive fall (Table IX). This direct relationship was confirmed in the study of packed cell volume to red blood cells (Table X).
'TABLE IX

Males			Females			
Range RBC millions/cmm.	Average RBC	Haemoglobin gm. per cent	PCV per cent	Average RBC	Hb . gm. per cent	PCV per cent
Above 6.25	6366	$16 \cdot 15$	50.00	.	.	
6.00-6.25	6.187	$17 \cdot 375$	$51 \cdot 00$.	.	.
5.75.5.99	5.933	15.82	$51 \cdot 66$.	.	
5.50-5.74	5.560	$15 \cdot 975$	$46 \cdot 75$			
5-25-5•49	$5 \cdot 340$	$10 \cdot 179$	48.50	54.40	14.66	$48 \cdot 66$
5.00-5.24	$5 \cdot 070$	$15 \cdot 070$	$44 \cdot 875$	53.09	$13 \cdot 96$	$46 \cdot 64$
4.75-4.99	4.840	$14 \cdot 300$	$43 \cdot 943$	43.87	13.89	$43 \cdot 90$
4.50-4.74	$4 \cdot 610$	$14 \cdot 464$	$42 \cdot 143$	42:899	$12 \cdot 61$	39•12
4-25-4.49	$4 \cdot 290$	$13 \cdot 230$	$39 \cdot 750$	$42 \cdot 32$	$12 \cdot 35$	$38 \cdot 66$
4.00-4.24	$4 \cdot 750$	$11 \cdot 750$	$39 \cdot 000$	$42 \cdot 07$	12.05	$37 \cdot 00$
Below 4.00	$3 \cdot 660$	$12 \cdot 317$	$35 \cdot 330$	$09 \cdot 903$	$09 \cdot 43$	$35 \cdot 25$

TABLE No. X

Males				Females		
Range PCV	Average PCV per cent	Hb . gm. per cent	RBC cmm.	Average PCV per cent	Hb . gm. per cent	RBC cmm .
Above 51	$51 \cdot 75$	$17 \cdot 16$	604	$51 \cdot 00$	$12 \cdot 80$	5•50
49-50.9	$49 \cdot 28$	16.56	5.59	49.50	13.85	$5 \cdot 125$
57-48.9	$47 \cdot 33$	13.93	5•19	$47 \cdot 30$	$15 \cdot 20$	$5 \cdot 120$
45-46.9	$45 \cdot 85$	14.76	$5 \cdot 05$	$45 \cdot 50$	$12 \cdot 65$	$4 \cdot 890$
43-44.9	$43 \cdot 50$	$15 \cdot 36$	495	43.917	14.55	$4 \cdot 980$
41-42-9	$41 \cdot 57$	13.84	$4 \cdot 64$	41.580	$13 \cdot 426$	$4 \cdot 579$
$39-40 \cdot 9$	$39 \cdot 80$	$13 \cdot 56$	$4 \cdot 55$	$39 \cdot 710$	$12 \cdot 685$	$4 \cdot 510$
37-38-9	$37 \cdot 00$	13.20	3.95	$37 \cdot 200$	10.780	$4 \cdot 150$
35-36.9	$35 \cdot 66$	12.63	$4 \cdot 28$	$35 \cdot 430$	11.510	4.090
33-34•9	33.00	.	$3 \cdot 35$	$34 \cdot 000$	09.800	3.850

Multiple correlation of PCV on red blood cells and haemoglobin was calculated and was 0.732053 . This was highly significant. Regression and multiple regression equation for either sex was formulated.
males :
PCV: -10.3244 plus 4.6207 R . B. C. plus 0.7502 Hb .
Standard error:-4.9880
Regression of PCV on Haemoglobin :-PCV :-9.18207 plus $2 \cdot 262 \mathrm{Hb}$. Regression of PCV on RBC :-PCV :- 14.52222 plus 6.0048 RBC.
FEMALES:-
PCV: -4.2387 plus 6.6273 RBC plus 0.521 Hb .
Regression of PCV on haemoglobin :- 17.216 plus 1.878 Hb .
Regression of PCV on RBC:-0.1817 plus 8.9641 RBC.
Since significantly high correlation existed between these two factors individually and collectively so an attempt has been made to prepare a nomogram (Graphs 1 \& 2).

Fig. 1.

Fig. 2.
DISCUSSION
The average packed cell volume was $45 \cdot 05 \pm 4 \cdot 81$ in males and $41 \cdot 62 \pm 4 \cdot 6$ in females with a spread of 33 to 53 per cent in males and 34 to 51 per cent in females. When compared to the values reported in the literature, the average in the female series agreed closely to the values reported by Singh et al. (1953), Sokhey et al. (1957) and Khanna and Sachdev (1946). The male values were in agreement with Chini and Chen-Ting (1947) and Chaudhry and Mitra (1957).

The values quoted by various workers vary widely. They spread between 56.00% to 28.39% in males and 49.00% to 10.5% in females.

The high values recorded may be due to low revolution per minute of the centrifuges which are commonly used in ordinary laboratories, though
the spinning might have bcen done for 50 minutes or more, since it is the speed of the centrifuging which influences the packing more than the time.

The low values recorded may be due to the random collection of the samples without regard to the criterion of health of subjects.

Plasma proteins and especially the albumin fraction seemed to posses some relotionship to PCV while globulin fraction had none. An increase or decrease in total proteins and albumin was associated with an increase or decrease in packed cell volume per cent in both sexes. The specific mechanism by which they influence it, is a matter of future study (Tables IV, V and VI). The statistical analysis revealed no significant relationship. Multiple regression equation was calculated but is of no practical value. No other biochemical factors studied appeared to have any influence on cell volume. Haematological factors, especially red blood cells and haemoglobin, had direct relationship to packed cell volume (Table IX \& X). Since statistical analyses revealed a significantly high correlation, a multiple regression equation could be recommended for prediction purposes.

Like other nomograms this nomogram is based on statistical calculations and is good enough to find out approximate values, but for research or accurate values the usual estimations should be done.

SUMMARY

1. Average packed cell volume for either sex with statistical findings have been calculated.

$$
\text { Males : }-45 \cdot 05 \pm 4 \cdot 82
$$

$$
\text { Females : }-41 \cdot 62 \pm 4 \cdot 62
$$

2. Influence of total protein (total protein and albumin fractions) on PCV was studied and total protein and albumin fraction were found to have some bearing on it.
3. Relation of PCV to RBC and haemoglobin was analysed and an alignment chart prepared.
4. No relationship between PCV and serum calcium or phosphorus was found.

The author is thankful to Lt. Col. Amir Chand, Prof. B. K. Anand, V. D. Mullick and I. D. Singh for their valued suggestions and Prof. G. R. Seth, G. P. Mathur and S. S. Nair for statistical help.

REFERENCES

1. Brown, A., and Goodall, A. L. (1946): F. Physiol., 104. p. 404.
2. Chaplin, and Mollison, P. L. (1952): Blood, 7, p. 1227,
3. Chaudhri, S., and Mitra, K. (1951): Ind. Coun. Med. Res. Tech. Report. New Delhi, p. 102.
4. Chini, and Chen, Ting (1947): F. Lab. © Clin. Med., 32, p. 66.
5. Clark, E. P., and Collip J. B. (1925): 7. Biol. Chem., 63, p. 461.
6. Fisk, C. H., and Subbarow, Y. (1925): Ibid. 66, 75,
7. Hamre, C. J., and Auim, H. (1942): Amer. F. Physiol, 100, 487.
8. Heller, V. G., and Paul, H. (1934): 7. Lab. \& Clin. Med. 19, 774. Ind. Coun. Med. Res. Spl. Report. Series No. 26 (1953)
9. Khanna, L. C., and Sachdev, J. C. (1946): Ind. Med. Gaz. 81, 296.
10. King, E. J. (1951): Micro. Analysis in Med. Biochemistry 7. \&o A. Churchil Ltd.
11. McCrathy, E. F. and VanSlyke, D. D. (1939): 7. Biol. Chem. 128, 567.
12. Napier, L. F., and Majumdar, D. H. (1938): Ibid, 26, 541.
13. Nelson, C. F., and Stoker, R. (1937): Folia. Haemat. 58, 333.
14. Ramalinghaswami, V. J., and Venkatachalam, P. S. (1950): 38, 17.
15. Singh, M. M., Kapoor, S. P., and Singh, G: (1953): Ind. Med. Gaz. LXXXVII, No. 6, 316.
16. Sokhey, S. S., Gokhale, S. K., Malandkar, M. M., and Billimoria, H. (1937): F. Med. Research; 25, 505.
17. Sokhey S. S., et al. (1938) : Ind. 7. Mcd. Res, 25, 723.
18. Thompkins, E. (1948): 7. Clin. Med. 33, 1180.
19. Van Slyke, (1927) : Biol. Chem. 73, 121.
20. Wintrobe, M. M. (1930): Medicine, 9, 195.
21. Idem. (1933): Johns. Hopk. Hosp. Bull., 53, p. 9111.
